IAI 2016

Development of Latent Fingermarks from Difficult Surfaces by Laser Light Sources

Dr. Shiquan LIU

Zhongliang Mi, Weisi Cai, Brian Dalrymple

Forensic Science Center of CUPL Institute of Forensic Science, Shanghai Municipal Public Security Bureau Shanghai Key Laboratory of Crime Scene Evidence

History

Crime Scene - Suzhou PD (2007)

Lasearcher Laser

Purple Laser 400 nm
Blue Laser 447 nm
Green Laser 532 nm
Red Laser 635 nm

Standard cutoff viewing filters

Photography

The first criminal fingerprint detected by laser

Detected, photographed and identified by Brian Dalrymple.

Photography

Photography

- Laser should not be held too close to articles since the article itself or the fingermark may be destroyed.
- Once a fingerprint is seen by its fluorescence, it should not be further illuminated until one is ready to photography it.
- Requiring careful scrutiny during the detection stage.

Experimental Design

Sample Collection Fingerprints were collected on a range of surfaces: Rocks, Stones, Wood, Fibers, Leather, Train Tickets

Chemistry

Modified Indanedione Stock

Experimental Design

"The stone which the builders rejected is become the chief corner-stone"

Crime Scene - Bricks

Bricks

Untreated Fingerprints on Brick

Green Laser 532 nm

Untreated Fingerprints on Brick

Blue Laser 447 nm

Untreated Fingerprints on Brick

Purple Laser 400 nm

IND

Laser + IND

Green Laser 532 nm

Laser + IND

Crime Scene

Samples

Untreated Fingerprints

Green Laser 532 nm

IND

Laser + IND

Green Laser 532 nm

Laser + IND

Fingerprint on stone

Laser + IND

Green Laser 532 nm

Fingerprint on wood

Laser + IND

Green Laser 532 nm

Surface

Fingerprint on leather

Laser + IND

Green Laser 532 nm

Surface

Train Tickets

Train Tickets

Dr. Meng Wang, Department of Trace Examination, National Police University of China.

Train Tickets

NaYF4:Yb Nanoparticles

Paper

Nano Research 2015, 8(6): 1800-1810 DOI 10:1007/s12274-014-0686-6 Research Article ISSN 1998-0124 CN 11-5974/04

NIR-induced highly sensitive detection of latent fingermarks by NaYF₄:Yb,Er upconversion nanoparticles in a dry powder state

Meng Wang¹³ (ES), Ming Li¹³, Mingying Yang² (ES), Xiaomei Zhang¹³, Aoyang Yu¹³, Ye Zhu⁴, Penghe Diu⁴, and Chuanbin Mao⁴ (ES)

¹Department of Trace Examination, National Police University of China, Shenyang 110035, China *Rey Laboratory of Impression Evidence Examination and Identifikation Technology, Ministry of Public Security, China *Institute of Applied Bioresource Research, College of Animal Science, Zhejlang University, Hangzhou 310058, China *Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, USA

ABSTRACT

Received: 13 September 2014 Revised: 03 December 2014 Accepted: 07 December 2014

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

KEYWORDS

upconversion, nanoparticles, fingermark, development The most commonly found fingermarks at crime scenes are latent and, thus, an efficient method for detecting latent fingermarks is very important. However, traditional developing techniques have drawbacks such as low detection sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we employed fluorescent NaYF&Yb,Er upconversion nanoparticles (UCNPs), which can fluoresce visible light when excited by 980 nm human-safe near-infrared light, to stain the latent fingermarks on various substrate surfaces. The UCNPs were successfully used as a novel fluorescent label for the detection of latent fingermarks with high sensitivity, low background, high efficiency, and low toxicity on various substrates including non-infiltrating materials (glass, marble, aluminum alloy sheets, stainless steel sheets, aluminum foils, and plastic cards), semi-infiltrating materials (floor leathers, ceramic tiles, wood floor, and painted wood), and infiltrating materials such as various types of papers. This work shows that UCNPs are a versatile fluorescent label for the facile detection of fingermarks on virtually any material, enabling their practical applications in forensic sciences.

1 Introduction

A fingermark is one of the most powerful traces that can be exploited as evidence for the identity of individuals since it represents the unique ridge skin pattern of an individual's finger. The most commonly found fingemarks at crime scenes are typically latent. Namely, they are normally invisible or less visible to

Address correspondence to Chuanbin Mao, chruso@ou.edu; Mingying Yang, yangm@zju.edu.cr; Meng Wang, mengwang@slam.inr.ac.cn

(B) TSINGHUA D Springer

Fingerprint on cotton

Laser + IND

Green Laser 532 nm

Quality

Quality

Web-based Software (PiAnoS)

Case # 1 – Homicide (06/01/2015)

- Cardboard found near the crime scene
- ◆ Laser examination negative
- > IND
- Two fingerprints located
- Identified as suspect

Case # 1 – Homicide (06/01/2015)

Case #2 – Homicide (2009)

• Varnished drawer surface

- ◆ Examined by LED negative
- Examined by Laser fingerprint found
- Examined by powder- negative
- ♦ Not identified as suspect

Case #2 – Homicide (2009)

Case #3 Serial Burglary Case (2013)

- Impressions located
- Examined by Laser
- Ridge detail detected
- ◆ Identified as accused

Case #3 Serial Burglary Case (2013)

Case #4 Homicide (2015)

Health and Safety Issues

- ◆ Always wear goggles when operating the laser.
- Never exposure of the skin to the laser beam.
- ◆ Always follow laser manuals.

Semiconductor Laser

Very portable

- No speckle
- More cheaper
- More powerful

Always worth a try !	7
Au	

Thank you for listening

Contact Information

Dr. Shiquan LIU

Institute of Evidence Law and Forensic Science China University of Political Science and Law

shiquan.liu@cupl.edu.cn